Selasa, 10 Desember 2013

BAB 6 PENGUKURAN PENYIMPANGAN (PERSENTIL,RANGE, DEVIASI, VARIAN)

































































PENGUKURAN PENYIMPANGAN
Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi  rendahnya perbedaan data yang diperoleh dari rata-ratanya. Ukuran penyimpangan digunakan untuk mengetahui luas penyimpangan data atau homogenitas data. Dua variabel data yang memiliki mean sama belum tentu memiliki kualitas yang sama, tergantung dari besar atau kecil ukuran penyebaran datanya. Ada bebarapa macam ukuran penyebaran data, namun yang umum digunakan adalah standar deviasi.
Macam-macam ukuran penyimpangan data adalah :
1. Jangkauan (range)
Range adalah salah satu ukuran statistik yang menunjukan jarak penyebaran data antara nilai terendah (Xmin) dengan nilai tertinggi (Xmax). Ukuran ini sudah digunakan pada pembahasan daftar distribusi frekuensi. Adapun rumusnya adalah








Contoh : 
Berikut ini nilai ujian semester dari 3 mahasiswa
A = 60 55 70 65 50 80 40
B = 50 55 60 65 70 65 55
C = 60 60 60 60 60 60 60
Dari data diatas dapat diketahui bahwa
A = memiliki Xmax=80, Xmin= 40 , R = 40 , meanya 60
B = memiliki Xmax=70, Xmin= 50 , R = 20 , meanya 60
C = memiliki Xmax=60, Xmin= 60 , R = 0 , meanya 60

2. Simpangan Rata-rata (mean deviation)
Simpangan rata-rata merupakan penyimpangan nilai-nilai individu dari nilai rata-ratanya. Rata-rata bisa berupa mean atau median. Untuk data mentah simpangan rata-rata dari median cukup kecil sehingga simpangan ini dianggap paling sesuai untuk data mentah. Namun pada umumnya, simpangan rata-rata yang dihitung dari mean yang sering digunakan untuk nilai simpangan rata-rata.
·         Data tunggal dengan seluruh skornya berfrekuensi satu







dimana xi merupakan nilai data
·         Data tunggal sebagian atau seluluh skornya berfrekuensi lebih dari satu








dimana xi merupakan nilai data
·         Data kelompok ( dalam distribusi frekuensi)








dimana xi merupakan tanda kelas dari interval ke-i dan fi merupakan frekuensi interval ke-i

Contoh :
Dari tabel diperoleh 






















3. Simpangan Baku (standard deviation)
Standar deviasi merupakan ukuran penyebaran yang paling banyak digunakan. Semua gugus data dipertimbangkan sehingga lebih stabil dibandingkan dengan ukuran lainnya. Namun, apabila dalam gugus data tersebut terdapat nilai ekstrem, standar deviasi menjadi tidak sensitif lagi, sama halnya seperti mean.
Standar Deviasi memiliki beberapa karakteristik khusus lainnya. SD tidak berubah apabila setiap unsur pada gugus datanya di tambahkan atau dikurangkan dengan nilai konstan tertentu. SD berubah apabila setiap unsur pada gugus datanya dikali/dibagi dengan nilai konstan tertentu. Bila dikalikan dengan nilai konstan, standar deviasi yang dihasilkan akan setara dengan hasilkali dari nilai standar deviasi aktual dengan konstan.
Rumus Simpangan Baku untuk Data Tunggal
·         untuk data sample menggunakan rumus









·         untuk data populasi menggunkan rumus








Contoh:
Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat?
Jawab
Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi.
Kita cari dulu rata-ratanya
rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9
























Kita masukkan ke rumus








Rumus Simpangan Baku Untuk Data Kelompok
·         untuk sample menggunakan rumus







·         untuk populasi menggunakan rumus









Contoh:
Diketahui data tinggi badan 50 siswa samapta kelas c adalah sebagai berikut

 












hitunglah berapa simpangan bakunya
1. Kita cari dulu rata-rata data kelompok tersebut

 















2. Setelah ketemu rata-rata dari data kelompok tersebut kita bikin tabel untuk memasukkannya ke rumus simpangan baku

 












4. Varians (variance)
Varians adalah salah satu ukuran dispersi atau ukuran variasi.  Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif.  Varians diberi simbol  σ2 (baca: sigma kuadrat) untuk populasi dan untuk ssampel.
Selanjutnya kita akan menggunakan simbol s2  untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi.
Rumus varian atau ragam data tunggal untuk populasi










Rumus varian atau ragam data tunggal untuk sampel











Rumus varian atau ragam data kelompok untuk populasi












Rumus varian atau ragam data kelompok untuk sampel










 Keterangan:
σ2 = varians atau ragam untuk populasi
S2 = varians atau ragam untuk sampel
fi = Frekuensi
xi = Titik tengah
x¯ = Rata-rata (mean) sampel dan   μ = rata-rata populasi
=  Jumlah data
5. Koefisien variasi (Coefficient of variation)
Koefisien variasi merupakan suatu ukuran variansi yang dapat digunakan untuk membandingkan suatu distribusi data yang mempunyai satuan yang berbeda. Kalau kita membandingkan berbagai variansi atau dua variabel yang mempunyai satuan yang berbeda maka tidak dapat dilakukan dengan menghitung ukuran penyebaran yang sifatnya absolut.
Koefisien variasi adalah suatu perbandingan antara simpangan baku dengan nilai rata-rata dan dinyatakan dengan persentase.

















Besarnya koefisien variasi akan berpengaruh terhadap kualitas sebaran data. Jadi jika koefisien variasi semakin kecil maka datanya semakin homogen dan jika koefisien korelasi semakin besar maka datanya semakin heterogen.

Referensi:
Suharyadi, & Purwanto. (2009). In Statistika untuk Ekonomi dan Keuangan Modern. Jakarta: Salemba Empat.
http://blajar-pintar.blogspot.com/2012/08/persentil-dari-data-tunggal-dan-data.html

Tidak ada komentar:

Posting Komentar